A New Type of Explosive Chemical Detector Based on an Organic Photovoltaic Cell

نویسندگان

  • Eric C. Nallon
  • Vincent P. Schnee
  • Qiliang Li
چکیده

A new type of chemical sensor to detect explosive related compounds has been designed and fabricated with an organic photovoltaic cell as the active element. The detection of chemical molecules is performed by optically exciting the cell while its photovoltaic open-circuit voltage is continuously sampled. Upon exposure to compounds like nitroaromatics, the sensors exhibit a significant increase in open-circuit voltage. This indicates an efficient internal energy transfer between the explosive chemicals and the organic thin film surface. It is quite unique that the organic chemical sensors directly use the open-circuit voltage as a detection indicator, while the vast majority of conventional chemical sensors are based on the change in resistance. Since the open-circuit voltage can be measured without current and can also be directly sampled or amplified in the circuits, this new type of chemical sensor is very attractive for low-power application and sensor networks for the future Internet of Things.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and Investigation of Photovoltaic Properties of New Organic Dye in Solar Cells Device

In this paper, we designed and synthesized free-metal dyes based on indoline. The proposed dyes were synthesized from phenothiazine as the starting material by standard reactions. The chemical structure of the synthesized dye was confirmed using FT-IR, 1HNMR and DSC techniques. Spectrophotometric measurements of the organic dyes in acetonitrile and on a TiO2 substrate ...

متن کامل

Materials Based on Carbazole for Organic Solar Cells Applications. Theoretical Investigations

The research in new organic π-conjugated molecules with specific properties has become one of the most interesting topics in fields of materials chemistry. These materials are promising for optoelectronic device technology such as solar cells. On the other hand, the use of low band gap materials is a viable method for better harvesting of the solar spectrum and increasing its efficiency. The Co...

متن کامل

Simple Photovoltaic Device Based on Multiwall Carbon Nanotube/Silicon Heterojunction

Multiwall carbon nanotubes (MWCNTs) are grown via chemical vapour deposition method directly on a stainless steel substrate. Raman spectroscopy and transmission electron microscopy are the techniques chosen to characterize the structure of the synthesized carbon nanotubes: few structural defects are detected. After their removal from the stainless steel substrate, the as-grown MWCNTs are then a...

متن کامل

Simple Photovoltaic Device Based on Multiwall Carbon Nanotube/Silicon Heterojunction

Multiwall carbon nanotubes (MWCNTs) are grown via chemical vapour deposition method directly on a stainless steel substrate. Raman spectroscopy and transmission electron microscopy are the techniques chosen to characterize the structure of the synthesized carbon nanotubes: few structural defects are detected. After their removal from the stainless steel substrate, the as-grown MWCNTs are then a...

متن کامل

Quantum Chemical Investigation of the Photovoltaic Properties of Conjugated Molecules Based Oligothiophene and Carbazole

The research in the organic π-conjugated molecules and polymers based on thiophenehas become one of the most interesting topics in the field of chemistry physics and materials science. These compounds have become the most promising materials for the optoelectronic device technology.. The use of low band gap materials is a viable method for better harvesting of the solar spectrum and increasing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017